Álgebra Linear - Prova Hipotética

Critérios para avaliação: Clareza, corretude, rigor, e concisão. (i) A redação das respostas deve ser clara. (ii) Todo o raciocínio desenvolvido na resposta deve estar correto. (iii) O nível de rigor nas respostas deve ser próximo ao usado nas notas de aula e bibliografia básica. (iv) As respostas não devem ser mais longas que o necessário.

Atenção: <u>Não</u> há garantia de que os tópicos sejam estes, ou que as questões sejam "muito parecidas, quase iguais" a estas. Esta prova funciona apenas como uma última lista de exercícios, e ajuda a entender o nível de dificuldade da prova. Pode ser que o conteúdo seja diferente (dentro do que vimos em aula), ou que as questões sejam um pouco diferentes (dentro do que exercitamos em aula e nas listas).

Ex. 1 — Diga o que é uma projeção ortogonal de um vetor em outro.
 Comentário: haverá uma pergunta conceitual na prova.

 ${\bf Ex.\,2}$ — Obtenha a solução para o sistema de equações diferenciais.

$$y'_1 = y_1 + y_2$$

 $y'_2 = 4y_1 - 2y_2$

Comentário: O sistema é

$$\mathbf{y}' = A\mathbf{y},$$

com

$$A = \begin{pmatrix} 1 & 1 \\ 4 & -2 \end{pmatrix}$$

Os autovalores e autovetores são

$$-3: (1,-4)^{\mathsf{T}}$$

2: $(1,1)^{\mathsf{T}}$

Assim, temos $D = P^{-1}AP$, com

$$P = \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix}, \quad P^{-1} = \frac{1}{5} \begin{pmatrix} 1 & -1 \\ 4 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} -3 & 0 \\ 0 & 2 \end{pmatrix}.$$

A solução para $A\mathbf{x} = \mathbf{x}'$ é

$$e^{tA} \textbf{x}(\textbf{0})$$

A matrix e^{tA} é

$$e^{tA} = P^{-1}e^{tD}P = \frac{1}{5} \begin{pmatrix} 1 & -1 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} e^{-3t} & 0 \\ 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix}$$

Basta multiplicar as matrizes:

$$P^{-1}e^{tD}P\textbf{y}(0) = \frac{1}{5e^{3t}}\begin{pmatrix} -(e^{5t}-1)x_2(0) - (-4e^{5t}+15e^{3t}+4)x_1(0) \\ (e^{5t}+5e^{3t}+4)x_2(0) + (-4e^{5t}-15e^{3t}+4)x_1(0) \end{pmatrix}$$

Ex. 3 — Diga se são produtos internos:

- i) Em \mathbb{R}^n , $\langle \mathbf{x}, \mathbf{y} \rangle = \theta \mathbf{x}^T \mathbf{y}$, onde θ é o ângulo entre \mathbf{x} e \mathbf{y} .
- ii) Em $C^0[0, 1]$, $\langle f, g \rangle = f(1/2)g(1/2)$.

Comentário: (i) <u>comutatividade:</u> ok, porque $\theta \mathbf{x}^T \mathbf{y}$ é o mesmo que $\theta \mathbf{y}^T \mathbf{x}$. (O ângulo não depende da ordem, e $\mathbf{x}^T \mathbf{y} = \mathbf{v}^T \mathbf{x}$.

positividade: o ângulo fica em $[0, 2\pi)$, portanto $e \ge 0$. Sabemos que $e \ge 0$, portanto, $e \ge 0$, portanto, $e \ge 0$. Além disso, $e \ge 0$, portanto $e \ge 0$, portanto $e \ge 0$.

linearidade: ok também:

$$\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \theta(\alpha \mathbf{x}^{\mathsf{T}}) \mathbf{y} = \alpha \theta \mathbf{x}^{\mathsf{T}} \mathbf{y} = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$$

$$\langle \mathbf{x} + \mathbf{w}, \mathbf{y} \rangle = \theta(\mathbf{x} + \mathbf{w})^{\mathsf{T}} \mathbf{y}$$

$$= (\theta \mathbf{x}^{\mathsf{T}} + \theta \mathbf{w})^{\mathsf{T}} \mathbf{y}$$

$$= \theta \mathbf{x}^{\mathsf{T}} \mathbf{y} + \theta \mathbf{w}^{\mathsf{T}} \mathbf{y}$$

$$= \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{w}, \mathbf{y} \rangle$$

Portanto sim, é produto interno!

(ii) <u>comutatividade</u>: ok, porque f(x)g(x) = g(x)f(x). <u>positividade</u>: ok, porque zero(1/2)zero(1/2) = 0.0 = 0, e $f(1/2)f(1/2) = [f(1/2)]^2 \ge 0$. <u>linearidade</u>: ok,

$$< af(x), g(x) >= af(1/2), g(1/2) >= a < f, g >.$$
 $< f + h, g >= [f(1/2) + h(1/2)]g(1/2)$
 $= f(1/2)g(1/2) + h(1/2)g(1/2)$
 $= < f, g > + < h, g >$